I guess I was wrong about the voltage drift I observed during the left channel no-load current adjustment. I connected the right channel again to the power supplies and the voltmeter to R236/7 and turned the output stage on. I adjusted the voltage to 14 mV after about 30 sec. Then I observed the voltmeter over time. After about 40 min the voltage reached a constant 18.2 mV. It appears this voltage strongly depends on the temperature of TR211 in the constant current source that feeds current into the trimmer.
I blew some air on TR211 with a straw, and immediately the voltage decreased by several mV. Even air current like from an AC can have significant influence.
I repeated this experiment with the suspect left channel. A similar result. After about 20 min the voltage was at 19 mV and after 1:30 hours at 19.6 mV remaining constant there after. Same sensitivity to air flow across TR211.
I think this experiment shows that both output stages may be running correctly. I guess the rule to adjust the trimmers when the Beomaster is still cold assumes that the final no-load voltage spec is higher than 18 mV after the Beomaster has warmed up.
Beolover provides professional Bang&Olufsen maintenance and restoration services. We give one year warranty on parts and labor. All parts featured on the blog are also available to other enthusiasts for their restoration projects. Please, send an email to beolover@gmail.com or use the contact form on the side bar. Enjoy the blog!
Featured Post
Beolover SyncDrive: DC Platter Motor Replacement for Beogram 4002 and 4004 (Type 551x and 552x)
Late Beogram 4002 and the 4004 (Types 551x and 552x), which have DC platter motors instead of the earlier synchronous AC motors usually suff...
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment
Comments and suggestions are welcome!